

B040230

Reg. No.		16		
0				

II Semester B.C.A. 6 (NEP) Degree Examination, August/September - 2024 DISCRETE MATHEMATICALS

(Regular/Repeater)

Time: 2 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1) Question Paper has Five questions.
- 2) Answer all Five questions.

Answer any Six questions.

 $(6 \times 2 = 12)$

- 1. a. If $A = \{1, 2, 4, 6, 8\}$ and $B = \{2, 4, 5, 9\}$. Find A-B.
 - b. If p, q and r propositions are false then find the truth value of $(p \lor q) \to r$.
 - c. Find the number of permutations of the letters of the word "INSTITUTION".
 - d. Write the recursive formula for the sequence 3, 7, 11, 15, 19, 23,
 - e. Define symmetric relation.
 - f. Define Pigeon hole principle.
 - g. Define Multi-Graph.
 - h. Define Euler path.

Answer any Three questions.

 $(3 \times 4 = 12)$

- 2. a) Prove the Logical Equivalence using Laws of Logic. $(p \lor q) \land \neg (\neg p \land q) \Leftrightarrow p$.
 - b) Test the validity of the Argument.

 If you work hard, then you will pass the course. If you pass the course, then you get a job. Therefore, if you work hard, then you get a job.
 - Give a direct proof of the statement.
 "If 'n' is an odd integer then n² is an odd integer".
 - d) Write a note on Rules of Inference.

[P.T.O.

Answer any Three questions.

 $(3 \times 4 = 12)$

- Find the number of permutations of the letters of the word "ASSASSINATION" and 3. also find in how many of these 3A's are together.
 - A committee of 8 members is to be choosen from 9 teachers and 4 students. In how b) many ways can this be done if there is to be a majority of teachers.
 - In a sample of 100 chips, 23 have a defect D₁, 26 have a defect of D₂, 30 have a defect c) of D₁, 7 have defects of D₁ and D₂, 8 have defect of D₁ and D₃, 10 have defects of D₂ and D₃ and 3 have all the three defects. Find the number of chips having:
 - Atleast one defect
 - No defect. ii)
 - Write a note on Divide and Conquer Algorithms. d)

Answer any Three questions.

 $(3 \times 4 = 12)$

- Prove by Mathematical Induction that for all positive integers $1+2+3+....+n=\frac{n(n+1)}{2}$ 4. a)
 - Let A={a, b, c, d} and let R be a relation on A, that has the matrix $M_R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ b)

Construct the diagraph of R and list in-degrees and out-degrees of all vertices.

- Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. c) Let $R = \{(1, a), (1, b), (2, b), (2, c), (3, b), (4, a)\}$ and Let S={(1, b), (2, c), (3, b), (4, b)}. Compute \overline{R} , $R \cap S$, $R \cup S$, and R^{-1}
- Let $A = \{1, 2, 3, 4\}$ where $R\{(1, 1), (1, 4), (2, 4)\}$ d) and $S=\{(1, 4), (2, 3), (2, 4), (3, 4)\}$. Find RoS, SoR, RoR and SoS.

Answer any Three questions.

 $(3 \times 4 = 12)$

- Define Null graph, Simple Graph, Connected and Disconnected graphs. 5.
 - Define a Planar graph and graph Isomorphism. b)
 - Write a note on Properties of Relations. c)
 - d) Define one-to-one function. The function $f: R \to R$ is defined by f(x) = 3x + 2 for all $x \in R$. Verify that f is one-to-one function.