. 47234

V Semester B.Sc. (NEP) Degree Examination, December/January - 2024-25 MATHEMATICS

Vector Calculus and Analytical Geometry

Paper : II (DSC)
(Regular/Repeater)

Time: 2 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1. Answer any Six questions from Q.No.1.
- 2. Answer any Three questions from Q.No's 2,3,4, and 5.

Answer any Six of the following questions.

 $(6 \times 2 = 12)$

1. a) Find the unit tangent vector to the curve

$$\vec{r} = (\cos 2t)i + (\sin 2t)j + tk$$

- b) Find grad ϕ if $\phi = x^2yz^2$ at (-1,2,3)
- c) If $\vec{f} = x^2 z i 2y^3 z^2 j + xy^2 z k$ find divf at (1,-1,1).
- d) State Stoke's theorem.
- e) Show that the planes 2x 4y + 3z = 0 and 10x + 11y + 8z 17 = 0 are perpendicular.
- f) Find the equation of sphere whose centre is (3,2,-1) and radius is 2 units.
- g) Define cone and write the general equation of cone.
- h) Find the equation of cylinder whose generators intersect the curve $ax^2 + by^2 = 2z, lx + my = p$

Answer any Three of the following questions.

 $(3 \times 4 = 12)$

- 2. a) Find the binormal vector for $\vec{r}(t) = ti + (3\sin t)j + (3\cos t)k$.
 - b) Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) along 2i-j-2k.
 - c) Prove that div(A+B) = divA + divB.
 - d) If ϕ is a scalar field then prove that $curl(grad\phi) = 0$

Answer any Three of the following questions.

 $(3 \times 4 = 12)$

- 3. a) If $f = (5xy 6x^2)i + (2y 4x)j$, Evaluate $\int_C f dr$, where C is the curve $y = x^3$ from the point (1,1) to the point (2,8).
 - b) Evaluate $\iint_S (yzi + zxj + xy) n \, ds$, where S is the surface of the Sphere $x^2 + y^2 + z^2 = a^2$ in the first octant.
 - c) State and prove Green's theorem.
 - d) If $\vec{F} = 2xzi xj + y^2k$ Evaluate $\int_V \vec{F} dV$, where V if the Volume of the region bounded by the surface x = 0, & x = 2, y = 0 & y = 6, $z = x^2$ & z = 4.

Answer any Three of the following questions.

 $(3 \times 4 = 12)$

- 4. a) Find the equation of the plane through the intersection of the planes 2x y = 0 and 3z y = 0 and perpendicular to the plane 4x + 5y 3z = 8.
 - b) Find the equation of the plane which bisects the acute angle between the planes 2x y + 2z + 3 = 0 and 3x 2y + 6z + 8 = 0.
 - Find the equation of the sphere through the points (0,0,0), (a,0,0), (0,b,0) and (0,0,c).
 - d) Derive the condition of orthogonality of two spheres $x^2 + y^2 + z^2 + 2u_1x + 2v_1y + 2w_1z + d_1 = 0$ and $x^2 + y^2 + z^2 + 2u_2x + 2v_2y + 2w_2z + d_2 = 0$

Answer any Three of the following questions.

 $(3 \times 4 = 12)$

- 5. a) Find the equation to the cone with vertex at the origin which passes through the curve $x^2 + y^2 + z^2 x 1 = 0$ and $x^2 + y^2 + z^2 + y 2 = 0$.
 - b) Find the equation of the cone with vertex at (0,0,0) and passing through the circle given by $x^2 + y^2 + z^2 + x 2y + 3z 4 = 0$, x y + z = 2.
 - c) Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and passes through the curve $x^2 + y^2 = 16$, z = 0.
 - d) Find the equation of the quadratic cylinder whose generators intersect the curve $ax^2 + by^2 + cz^2 = 1$, lx + my + nz = p.

				4/	433
Reg. No.	,				

V Semester B.Sc. 6 (NEP) Degree Examination, December/January - 2024-2025
MATHEMATICS

Real Analysis - II and Complex Analysis

Paper: I

(Regular/Repeater)

Time: 2 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1) Answer any Six questions from Q.No.1
- 2) Answer any Three questions from Q.No's 2,3,4, and 5

Answer any Six of the following.

(6×2=12)

- 1. a) Define upper and Lower sums.
 - b) Find U(p,f) & L(p,f) for the function f(x) = x in[0,1] and Partition $P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1\right\}$
 - c) State Fundamental theorem of integral Calculus.
 - d) Evaluate $\int_{0}^{1} x^{8} (1-x)^{7} dx$.
 - e) Define analytic function.
 - f) Prove that $\int_C \frac{dz}{z-a} = 2\pi i$, where C is a circle.
 - g) State Cauchy's inequality.
 - h) Define bilinear transformation.

Answer any Three of the following.

 $(3 \times 4 = 12)$

- 2. a) State and prove the necessary and sufficient condition for integrability of bounded function.
 - b) Let $f, g : [a,b] \to R$ are bounded functions and R-integrable over [a,b], $f(x) \le g(x)$ then prove that $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

- c) Show that f(x) = 2x + 1 is integrable on [1,2] and $\int_1^2 (2x+1)dx = 4$.
- d) Using Mean Value theorem, prove that $\frac{\pi^2}{9} \le \int_{\pi/6}^{\pi/2} \frac{x}{\sin x} dx \le \frac{2\pi^2}{9}$.

Answer any Three of the following.

 $(3 \times 4 = 12)$

- 3. a) State and Prove Dirichlet's test for the convergence of the integral of a product of two functions.
 - b) Examine the convergence of $\int_0^\infty e^{-ax} \cdot \cos bx \, dx$.
 - c) Prove that $B(m,n) = \int_0^1 \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx$.
 - d) Prove that $\int_0^\infty x^2 e^{-x^4} dx . \int_0^\infty e^{-x^4} dx = \frac{\pi}{8\sqrt{2}}$

Answer any Three of the following.

 $(3 \times 4 = 12)$

- 4. a) State and prove necessary condition for Cauchy's -Reimann equations.
 - b) Prove that an analytic function with constant modulus is constant.
 - c) Prove that $3x^2y + 2x^2 y^3 2y^2$ is harmonic. Find the harmonic conjugate.
 - d) If f(z) = u + iv is analytic and $u v = e^x (\cos y \sin y)$ then find f(z) in terms of z.

Answer any Three of the following.

(3×4=12)

- 5. a) State and Prove Cauchy's Integral theorem.
 - b) Evaluate $\int_C \frac{z}{(z^2+1)(z^2-9)} dz$, where C is the circle |z|=2.
 - c) Prove that a bilinear transformation preserves the cross-ratio of four points.
 - d) Find the bilinear transformation which maps z=0,i,-1 onto w=i,1,0 respectively.

		i			
1 10 0.00	-		20.00	100	

327963

Reg. No.				

V Semester B.Sc.6 (NEP) Degree Examination, December/January - 2024-25 PHYSICS (OPTIONAL)

Elements of Atomic, Molecular and Laser Physics

Paper : II (Regular)

Time: 2 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1. Calculators may be allowed for solving problems.
- 2. Write intermediate steps.

Answer any Six of the following questions.

 $(6 \times 2 = 12)$

47238

- 1. a) Who discovered the nucleus?
 - b) Mention an important outcome of Rutherford's alpha Patrick scattering experiment.
 - c) What is stark effect?
 - d) Calculate Lande's 'g' factor for $2P_{\frac{3}{2}}$ state.
 - e) Mention the types of molecules based on their moment of inertia.
 - f) What are stoke's and antistoke's lines.
 - g) Give two examples of macroscopic properties of a system.
 - h) Give an example of fermion.

Answer 'a' and 'b' OR 'c' and 'd' of the following questions.

- 2. a) Derive expression for radius of an atom using Bohr's theory of hydrogen atom.
 - b) Write a note an spectral series of hydrogen atom.

(8+4)

(OR)

- c) Describe Frank and Hertz experiment to determine excitation potential.
- d) The wavelength of first line in Balmer series is 656.3nm. What is the wavelength of second line in Balmer series. (8+4)

Answer 'a' and 'b' OR 'c' and 'd' of the following questions.

- 3. a) Derive an expression for magnetic dipole moment of an electron due to orbital motion. Hence define gyromagnetic ratio.
 - b) Explain L-S and J-J Coupling.

(8+4)

(OR)

- c) What is Zeeman effect? Describe the experimental arrangement to study Zeeman effect.
- d) Calculate Zeeman shift observed in normal Zeeman effect when a spectral line of wavelength 5600 Angstrom is subjected to magnetic field of 0.8 T.

Given:
$$\frac{e}{m} = 1.76 \times 10^{11} \text{ ekg}^{-1}$$
 (8+4)

Answer 'a' and 'b' OR 'c' and 'd' of the following questions.

- 4. a) Explain the theory of a vibrating molecule as a simple harmonic oscillator. Draw the energy level diagram.
 - b) The force constant of the bond in CO molecule 187Nm^{-1} . Its reduced mass is $1.14 \times 10^{-26} \text{ kg}$. Compute the frequency of vibration of CO molecule and spacing between its vibrational energy levels (Given: $h = 6.63 \times 10^{-34} \text{ Js}$) (8+4)

(OR)

- c) With a neat diagram, explain the construction and working of a Ruby laser.
- d) Explain the processes (i) Absorption (ii) Spontaneous emission (iii) Stimulated emission. (8+4)

Answer 'a' and 'b' OR 'c' and 'd' of the following questions.

- 5. a) Derive an expression for Maxwell-Boltzmann distribution function.
 - b) Explain different types of ensemble with the help of a neat diagrams. (8+4)

(OR)

- c) Differentiate between Maxwell Boltzmann, Fermi Dirac and Bose-Einstein Statistics.
- d) Define thermo dynamic probability. Give the expression for thermo dynamic Probability for distinguishable Patrick and explain the terms. (8+4)

	Inm
--	-----

310339

		-	* / Z	45/	EU.	45 U
Reg. No.						

V Semester B.Sc. (NEP) Degree Examination, December/January - 2024-25 CHEMISTRY(DSC)

Paper: I

(Regular/Repeater)

Time: 2 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1. All questions are compulsory.
- 2. Draw neat diagrams and give equations wherever necessary.
- 1. Answer any Six questions.

 $(6 \times 2 = 12)$

- a) What is ligand? Give an example of polydendate ligand.
- b) What are ionization isomers? Give example.
- c) Write the nitration reaction of Furan and pyridine.
- d) Which is more basic between pyridine and piperidine and why?
- e) What is zero-point energy? Give its equation.
- f) Calculate the vibrational degrees of freedom of H₂O molecule.
- g) What type of polymer is Nylon 66? Mention the monomers of it.
- h) What are conducting polymers? Give example.
- 2. Answer any Three questions.

 $(3 \times 4 = 12)$

- a) Explain the colour property of transition elements.
- b) What are lanthanides? Write about the lanthanide contraction and its cause.
- c) Discuss the hybridization, geometry and magnetic property of $[CoF_6]^{-3}$ ion by VBT.
- d) Write the IUPAC name of following complexes.
 - i) $K_3 \lceil Fe(CN)_6 \rceil$
 - ii) $Na[Ag(CN)_2]$
 - iii) $\left[Co(NH_3)_6 \right] cl_3$
 - iv) $K_3 \left[Cr \left(C_2 O_4 \right)_3 \right]$

Answer any Three questions. 3.

 $(3\times 4=12)$

- Explain the molecular orbital picture and aromaticity of Furan. a)
- Discuss the constitution of coniine. b)
- Give the reactions to show the following in Nicotine c)
 - Presence of pyridine ring with a sidechain at position-3
 - Presence of pyrrole /pyrrole derivative ii)
 - iii) N-methyl pyrrolidinering bonded to pyridine through position-2
- What is Green Chemistry? Mention the principles of Green chemistry.

4. Answer any Three questions.

 $(3 \times 4 = 12)$

- Derive an expression for rotational energy of a rigid diatomic molecule.
- Give the potential energy curve for bonding molecular orbital and write the b) characteristics of bonding molecular orbitals.
- c) State Frank-Condon principle and explain it with a potential energy curve.
- d) The pure rotational spectrum of HCl molecule contains a series of equally spaced lines separated by 20.8cm⁻¹. Calculate the bond length of the molecule.

(Given
$$M = 1.63 \times 10^{-27} \text{ kg}$$
, $h = 6.626 \times 10^{-34} \text{ Js}$, $c = 3 \times 10^{10} \text{ cms}^{-1}$)

5. Answer any Three questions.

 $(3 \times 4 = 12)$

- a) Write the preparation, properties and applications of polytetrafluoro ethene polymer.
- b) Give the preparation, properties and application of polystyrene.
- c) What are silicones? Write the differences between inorganic and organic polymers.
- d) What are nanomaterials? How they are classified based on composition.

11111			Ш	Ш
		Ш	Ш	Ш

1	313189	Reg. No.				

V Semester B.Sc. (NEP) Degree Examination, December/January - 2024-25 CHEMISTRY(DSC)

Paper: II

(Regular/Repeater)

Time: 2 Hours

Maximum Marks: 60

Instructions to Candidates:

- 1. All questions are compulsory.
- 2. Draw neat diagrams and give equations wherever necessary.

1. Answer any Six questions.

 $(6 \times 2 = 12)$

47226

- a) What are alloys? Mention the types of alloys.
- b) What are abrasives? Give examples.
- c) Write the structure and a use of NBS reagent.
- d) Write two requirements of a dye.
- e) Mention two applications of salt bridge.
- f) Give two examples of metal insoluble salt-anion electrode.
- g) What is chromophore? Give example.
- h) What is Base peak in Mass spectrometry?

2. Answer any Three questions.

 $(3 \times 4 = 12)$

- a) Explain the manufacture of glass using tank furnace.
- b) Write about the following
 - i) Setting of cement
 - ii) Annealing of glass.
- c) What are fuels? Write their characteristics.
- d) Explain the manufacture of Biogas.

3. Answer any Three questions.

 $(3 \times 4 = 12)$

- a) Write the mechanism of aromatisation of tetralin using DDQ.
- b) Discuss the mechanism of oxidation of 1,2-diol to aldehyde using lead tetra acetate.
- c) What are Azodyes? Write the synthesis of Congo red.
- d) What type of dye is indigo? Write its synthesis.

47226

4. Answer any Three questions.

 $(3 \times 4 = 12)$

- a) Write a note on weston standard cell.
- b) Derive the Nernst's equation for EMF of a cell.
- c) How pH of solution is determined using glass electrode?
- d) Mention the type of below cell and calculate its EMF at 25°C

 $Ag \mid AgNO_3(0.01m) \parallel AgNO_3(0.1M) \mid Ag$

5. Answer any Three questions.

 $(3 \times 4 = 12)$

- Explain the variation in stretching frequency of C = O IR absorption band in organic compounds.
- b) Explain in brief the types of electronic transitions.
- c) Write about the following with example
 - i) Alexochromes
 - ii) Hypochromic shift
- d) What is McLafferty rearrangement? Explain it with respect to hexenoic acid.

CORNER POPULAR OF THE P	mer um mer i fi mi	1 100 EX W 2 100 1	PRI TEN I II IE TE IN	FERT SE TEST DE ON TO TO THE
1 11 1 1 1 1 1 1 1		1 16 1 1 3 1 1 1 1 1	1 E 1 I I I I I I I I I I I I I I I I I	1141 (1 1131 (8 91 111 11
100 10 101			8 B 8 6 B 1 B 18 G 18	

	4	172	37/	E03	370	/EC	30	380
Reg. No.								

V Semester B.Sc.6 (NEP) Degree Examination, December/January - 2024-25 PHYSICS

Classical Machanics and Quantum Mechanics - I

Paper: I

(Regular)

Time: 2 Hours Maximum Marks: 60

Instructions to Candidates:

- 1. Use calculators for calculations.
- 2. Write intermediate steps in solving problems.
- 1. Answer any SIX of the following questions.

 $(6 \times 2 = 12)$

- a) What is non inertial frame of reference? Give an example.
- b) State the Principle of virtual work.
- c) State the Newtonian principle of relativity.
- d) What are massless particles? Give an example.
- e) What is Compton effect?
- f) What are De Broglie Waves? Mention expression for their Wavelenght.
 - g) What is normalization of a wave function?
 - h) What is the principle of scanning tunneling microscope?
- 2. Answer 'a' and 'b' OR 'c' and 'd' of the following questions.
 - a) Establish the relation between (i) Workdone by a force and kinetic energy (ii) Workdone and potential energy for a conservative force. Hence prove the law of conservation of energy.
 - b) State and prove the law of conservation of angular momentum.

(8+4)

(OR)

- c) Derive Lagrange's equation of motion from D Alembert's principle.
- d) Explain the different types of Constraints.

(8+4)

- 3. Answer 'a'and 'b' OR 'c' and 'd' of the following questions.
 - a) Derive Lorentz transformation equations.

b) How fast would a rocket has to go relative to an observer at rest for its length to be contracted to 99% of its Length at rest. (Given c=3×10⁸ ms⁻¹) (8+4)

(OR)

- c) With a neat diagram, explain relativistic Doppler effect. Obtain expression for relativistic transformation of frequency. What are transverse and Longitudinal Doppler effect.
- d) What is mass energy equivalence. Derive $E = mc^2$.

(8+4)

- 4. Answer 'a' and 'b' OR 'c' and 'd' of the following questions.
 - a) Derive an expression for the Compton Shift.
 - b) X-rays of wavelength 4 A.U.fall on electron and are scattered at an angle of 60° Determine the compton shift.

Given:

Plank's constant $h = 6.625 \times 10^{-34} JS$

Rest mass of electron $m_0 = 9.11 \times 10^{-31} \text{ Kg}$

Speed of light in air $c = 3 \times 10^8 \,\mathrm{m \, s^{-1}}$

(8+4)

(OR)

- c) Give an illustration of Heisenberg uncertainty Principle by gamma ray microscope thought experiment.
- d) Give brief explanation of G.P Thomson's experiment and its significance. (8+4)
- 5. Answer 'a' and 'b' OR 'c' and 'd' of the following questions.
 - a) Obtain an expression for time independant Schrodinger wave equation.
 - b) What are the Postulates of quantum mechanics.

(8+4)

(OR)

- c) Derive Schrodinger wave equation for a linear harmonic oscillator.
- d) An electron is confined in a box of length 1 angstrom. Calculate the lowest energy of the system. Given :Mass of electron = 9.1×10^{-31} kg, h = 6.625×10^{-34} JS. (8+4)