		1	
--	--	---	--

			4	44:	ენგ
Reg. No.				3	

VI Semester B.B.A.4 (CBCS) Degree Examination, October - 2023 PLACEMENT AND TRAINING

Paper: SEC - 4

(Regular)

Time: 2 Hours

Maximum Marks: 40

Instructions to Candidates:

Write All question numbers correctly.

SECTION-A

- L Answer any Five sub questions of the following. Each question carries 2 marks. $(5\times2=10)$
 - 1. a) What is Induction?
 - b) What is Placement?
 - c) What is Training?
 - d) What is Training Period?
 - e) What is T-Group training?
 - f) What is Apprenticeship Training?
 - g) What is Simulation?

SECTION - B

II. Answer any Two sub questions of the following. Each question carries 5 marks.

 $(2 \times 5 = 10)$

- 2. Explain the process of Induction.
- 3. Why is training important.
- 4. Explain the different types of on the -Job Training Method.

SECTION-C

- III. Answer any Two sub questions of the following. Each question carries 10 marks.(2×10=20)
 - 5. What is the purpose of conducting an induction programme in the organisation.
 - **6.** Explain the different types of off the Job training in an organisation.
 - 7. What is the responsibility for training with respect to:
 - i) Top management
 - ii) Training Managers

		44322/F0420								
Reg. No.					dist	14-5-453				

VI Semester B.Sc. 5 Degree Examination, October - 2023 MATHEMATICS

Complex Analysis And Ring Theory

Paper: I

(w.e.f. 2022-23)

(Regular)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Question paper has 3 parts. Namely A,B and C.
- 2) Answer all parts.

PART-A

Answer any TEN of the followings.

 $(10 \times 2 = 20)$

- 1. a) Prove that an analytic function with constant imaginary part is constant.
 - b) Show that $f(z) = z(\operatorname{Im} z)$ is not analytic
 - c) Define 'Harmonic Conjugate'.
 - d) Evaluate $\int_{C} \frac{dz}{z-1}$ around the circle |z-1| = 3.
 - e) State 'Laurent's theorem'.
 - Prove that the poles of an analytic function are isolated.
 - g) Find the residue of $f(z) = \frac{e^z}{z(z-1)^2}$ at z=0.
 - h) Define:
 - i) Simple pole
 - ii) Removable singularity
 - State 'Jorden's lemma'.
 - j) State 'Cauchy's inequality'.
 - b) Define a Sub ring and give an example.
 - 1) In a ring $(R, +, \bullet)$ prove that $a.0 = 0 \forall a \in R$ and 0 is the identity element w.r.t +.

P.T.O.

PART - B

Answer any FOUR of the followings.

 $(4 \times 5 = 20)$

- State and prove necessary condition for a function f(z) to be analytic. 2.
- 3. Prove that $3x^2y + 2x^2 - y^3 - 2y^2$ is harmonic. Find the harmonic conjugate.
- 4. State and prove Cauchy's integral formula.
- 5. z=a is of f(z)a pole then of order m Re $s\{f(z):a\} = \lim_{z\to a} \left\{ \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left[(z-a)^m f(z) \right] \right\}$
- Using contour integration, prove that $\int_0^{2\pi} \frac{d\theta}{s + 3\cos\theta} = \frac{\pi}{2}$ 6.
- Show that the set $z(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in z\}$ is a ring w.r.t usual addition and multiplication. 7.

PART-C

Answer any FOUR of the followings.

 $(4 \times 10 = 40)$

- If f(z) = u + iv is an analytic function of z = x + iy and ψ is any function of z with 8. a) derivatives of first and second order exists, then prove $\left[\frac{\partial \psi}{\partial x}\right]^{2} + \left[\frac{\partial \psi}{\partial y}\right]^{2} = \left\{\left[\frac{\partial \psi}{\partial u}\right]^{2} + \left[\frac{\partial \psi}{\partial y}\right]^{2}\right\} \left|f'(z)\right|^{2}$
 - If f(z) = u + iv is analytic and $u v = (x y)(x^2 + 4xy + y^2)$ find f(z) in terms of z.
- 9. State and prove 'Liouville's theorem'.
 - Let f(z) be analytic in a region between two closed contours C_1 and C_2 , then prove that $\oint_{C} f(z) dz = \oint_{C} f(z) dz$
- State and Prove 'Taylor's theorem'. 10. a)
 - Expand $f(z) = \frac{4z+3}{(z+2)(z+3)}$ by Laurent's series for
 - i) 2 < |z| < 3
 - ii) |z| > 3

- 11. a) State and Prove 'Cauchy's residue theorem'.
 - b) Prove by Contour integration that $\int_{0}^{\infty} \frac{dx}{(x^2+1)^3} = \frac{3\pi}{16}$
- 12. a) Define homomorphism of two rings. If $f: R \to R'$ is a homomorphism from the ring R into R', then prove that
 - i) f(0) = 0' where 0 and 0' are the zeros of R and R'
 - ii) $f(-a) = -f(a) \forall a \in R$.
 - b) If $G = \{0,1,2,3,4\}$ then prove that G is an integral domain w.r.t addition and multiplication modulo S.

			44	348	3/F.	508
Reg. No.						

VI Semester B.Sc. 5 Degree Examination, October - 2023 MATHEMATICS (SEC)

Graph Theory

(Regular / Repeater)

Time: 2 Hours

Maximum Marks: 40

Instructions to Candidates:

Answer All questions.

Answer any Five of the following.

 $(5 \times 2 = 10)$

- a) Define simple graph and pseudo graph.
 - b) Define a regular graph and draw a regular graph of degree 4.
 - c) Prove that in a (p,q) graph, $\sum_{i=1}^{p} \deg(vi) = 2q$
 - d) Write the degree sequence for the following graph.

- e) Define a bipartite graph. Draw a complete bipartite graph K_{4,3}
- f) Define a spanning and induced sub-graphs.
- g) Define a work and a trail.

TP.T.O.

Answer any Six of the following.

 $(6 \times 5 = 30)$

- Prove that in a graph, there exists even number of vertices with odd degrees. 2.
- Let G be a (p,q) graph all of whose points have degree K or K+1. If G has t>0 points of 3. degree K, then show that t = P(K+1) - 2q.
- Show that in any group of two or more people, there are always two with exactly the same 4. number of friends inside the group.
- A graph G with P points and $\delta \ge \frac{p-1}{2}$ is connected. 5.
- Prove that a graph G with at least two points, is bipartite iff all its cycles are even. 6.
- Prove that in a connected graph, any two longest paths have a point in common. 7.
- 8. Define isomorphism of graphs. Prove that isomorphism preserves the degree of vertices.
- Define a cubic graph. Show that every cubic graph has even numbers of vertices. 9.

18.10			THE STR
1118			118 111
6 SE E S	BURNER DIRECT	A100 2350	和市 (金田)

			,	420	042
Reg. No.					

VI Semester B.Sc. Degree Examination, October - 2023

PHYSICS

Solid State Physics, Nuclear Physics. Energy Society Electronics and Special Materials

Paper - I

(Repeaters)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Calculators are allowed to solve the problems.
- 2. Write necessary intermediate steps.

PART-I

Answer any TEN of the following questions.

 $(10 \times 2 = 20)$

- 1. a) What is lattice?
 - b) What is primitive cell?
 - c) Define energy gap.
 - d) What is Meissner effect.
 - e) What are magic numbers.
 - f) Mention Geiger Nuttal law.
 - g) What is Zenith angle.
 - h) Write the truth table of NOR gate.
 - i) Mention any two applications of conducting polymers.
 - j) Find the lattice constant of NaCl when incident X-ray beam has wavelength of 1.15AV and glancing angle of 11.8° in the first order spectrum.
 - k) If the solar altitude angle at a place is 45°20' calculate the value of zenith angle.
 - 1) Convert binary (1101), to decimal.

PART-II

Answer any FOUR of the following questions.

 $(4 \times 5 = 20)$

- Describe Nacl crystal structure.
- Write a short note on super conductivity.

P.T.O.

- 4. Mention the advantages of renewable energy sources.
- 5. A cyclotron with magnetic field B = 1.5 weber/meter² is used to accelerate proton. Calculate the frequency of the oscillator connected across the dees.
- 6. The electrical and thermal conductivity of silver at 303 K are 6.2×10⁷ SI units and 425 SI units respectively. Calculate Lorentz number.
- 7. Prove the Boolean expression

$$(A+B+C)(A+B) = A+B.$$

PART-III

Answer any FOUR of the following questions.

 $(4 \times 10 = 40)$

- Give the Einstein's theory of specific heat of solids and mention its limitations. 8.
- 9. Derive an expression for electrical and thermal conductivity on the basis of free electron theory.
- 10. Describe construction and working of a G.M. counter.
- 11. Describe the construction and working of a Angstrom's pyrheliometer.
- 12. State and prove Demorgan's first and second laws with circuit and truth tables.