|--|--|--|--|--|

32	521	/F	21	n
JA	$J \angle I$	/ 1	41	v

Reg. No.				

V Semester B.C.A. 3 Degree Examination, November - 2020 OPERATING SYSTEM

(Regular)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions of Section A,B,C as per the instructions.
- 2. Draw diagrams Wherever necessary.

SECTION-A

Answer any Ten of the following

 $(10 \times 2 = 20)$

- a) Differentiate between independent & Co-Operating Process.
- b) Mention the types of Interprocess Communication.
- c) Define a System Call.
- d) What are the advantages of Multi processor Systems.
- e) What is through put?
- f) What is deadlock?
- g) What is the use of an overlay?
- h) What is demand paging?
- i) Differentiate between a Counting and Binary Semaphore.
- i) What is Pagefault?
- k) Mention various file attributes.
- 1) Name any three user authentication methods.

SECTION - B

Answer any Four questions.

- 2. Explain the concept of multiprogramming with time sharing technique.
- 3. Explain the types of system-Calls.
- 4. What is critical section problem? Explain
- 5. Explain Swapping process with neat diagram.
- 6. Explain various file operations.
- 7. Explain access matrix method of system protection.

SECTION-C

Answer any Four of the following

8. Consider the following set of processes with CPU burst time and arrival tim milliseconds.

Process	Arrival time	Burst Time
P_{ι}	0	8 ms
P_2	1	4 ms
P_3	2	9 ms
P_4	3	5 ms

- i) Draw the GANTT-CHARTS illustrating the execution of these processes to and Round Robin Scheduling. (Quantum Time = 01ms)
- ii) Calculate average waiting time for FCFS & R R Scheduling.
- iii) Calculate average turn around time for FCFS & R R Scheduling.
- 9. a) Explain Dining Philosopher's Problem of Synchronization.
 - b) Explain paging with an example.

nI

Consider a system with 5 processes P₀ through P₄ and three resource types A, B, C. Resource type C has 7 instances. 10. type A has 10 instances, resource type B has 5 instances and resource type C has 7 instances. The following snap shot of the system has been taken.

Allogot:							
	Allocation				Max		
	<u>A</u>	_B_	C	A	В	C	
P ₀	0	1	0	7	5	3	
P	2	0	0	3	2	2	
P ₂	3	0	2	9	0	2	
P_3	,2	1	1	2	2	2	
P_4	0	0	2	4			
\mathbf{P}^2	3	0	2 2	2	2 3		

Using Bankers Algorithm answer the following.

- What is the content of available matrix?
- ii) What is the content of need matrix?
- iii) Find the safe sequence, if the system is in a safe state. (2+2+6)
- Explain contiguous allocation method of allocating disk's space to file. 11. a)
 - b) Write a note on IPC (5+5)
- Explain optimal Page Replacement and least recently used page replacement algorithm a) considering the following reference string. [7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1].
 - Explain SSTF & SCAN Disk Scheduling algorithm with an example. b) (5+5)