

			41,	54 1	./C	41 0
Reg. No.						

III Semester BCA.4 Degree Examination, Nov./Dec. - 2019 DISCRETE MATHEMATICAL STRUCTURES

(Regular)

PAPER: BCA 4

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates: Scientific calculators are allowed.

SECTION - A

Answer **All** the questions:

 $(10 \times 2 = 20)$

11201/0010

- **1.** a) Define Tautology with truth table.
 - b) Define Quantifiers.
 - c) If $U = \{1,2,3,4,5,6,7,8,9\}$, $A = \{1,3,5,6\}$ & $B = \{2,3,4,5\}$ find $A \triangle B$.
 - d) State Mathematical induction principle.
 - e) Define pigeonhole principle.
 - f) Define combination.
 - g) Write the recursive formula for the sequence 10,13, 16, 19, ------
 - h) Define semi group.
 - i) Define general graph.
 - j) Define Trees.

SECTION - B

Answer any **Four** of the following:

 $(4 \times 5 = 20)$

- **2.** Construct the truth table $(\sim p \land q) \rightarrow r$.
- 3. Define equivalence relation and verify R is an equivalence relation $A = \{1,2,3,4\}$ and $R = \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,3),(3,3),(4,4)\}$
- 4. Let G be the set of all non-zero real numbers and let $a * b = \frac{1}{2}(ab)$. Show that (G,*) is an abelian group.
- 5. Prove by mathematical induction for that $1^2 + 3^2 + 5^2 + \dots (2n-1)^2 = \frac{1}{3}n(2n-1)(2n+1)$.

P.T.O.

6. Find in degree and out degree of the vertices of the digraph.

SECTION - C

Answer any Four questions of the following:

 $(4 \times 10 = 40)$

- 7. a) Give a direct proof of the statement "The Square of an odd integer is an odd integer".
 - b) State any 5 rules of Inference along with their names.

(5+5=10)

- **8.** a) Write any 4 properties of the relations.
 - b) $A = \{1,2,3,4\}$ and let R be the relation on A defined by $R = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$. Represent the relation R as matrix & draw its diagraph. (5+5=10)
- **9.** a) If $a = \{0,1,2,3,4,5,6\}$ construct addition table for $(+Z_7)$.
 - b) Define subgroup & monoid group.

(5+5=10)

- **10.** a) Find the number of permutations of the letters of the word "MASSASAUGA". In how many of these all four A's are together? And how many of them begin with S?
 - b) Prove that $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |B \cap C| |A \cap C| + |A \cap B \cap C|$ (5+5=10)
- 11. Define any 4 of the following terms:

(10)

- i) Graph
- ii) Complete Graph
- iii) Isomorphism
- iv) Regular Graph
- v) Complement of Graph
